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Abstract
We derive analytic expressions for propagators in spin–orbit coupled systems.
In addition to their kinetic energy, these systems exhibit a potential energy
that mixes position, momentum and spin operators. We consider Hamiltonians
with limited noncommutativities: the confined spin–orbit coupled Hamiltonian
Hc

SO = p2

2m
+ γσ · L + 1

2mη2(x2 + y2), the confined Equal–Strength–Rashba–

Dresselhaus Hamiltonian Hc
ESRD = p2

2m
+ α

h̄
(px + py)(σx −σy) + 1

2mη2(x2 + y2)

and the confined Opposite–Strength–Rashba–Dresselhaus Hamiltonian
Hc

OSRD = p2

2m
+ α

h̄
(px − py)(σx + σy) + 1

2mη2(x2 + y2). We use both a
classical action method and an algebraic method in our derivations. We mention
specific applications for these propagators and illustrate their significance with
examples of wavepacket evolution.

PACS numbers: 03.65.Fd, 31.15.aj, 72.25.Dc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spin–orbit coupling (SOC) occurs in many areas of physics. Discovered in the fine
structure of atomic spectra, later introduced to explain the nuclear structure, it is now also of
great interest in condensed matter systems, such as graphene [1] and semiconducting materials
with promising spintronics applications [2, 3]. It is also found in the physics of optical lattices
mimicking condensed matter systems [4]. The SOC is characterized by interaction terms that
contain position r, momentum p and spin operators S. In nuclear and atomic systems, the
spin–orbit interaction is given in the form HSO = γ (r)S · L, where L = r × p. The coupling
strength γ is determined in atomic systems by the Coulomb potential V (r) such that

γ (r) ∼ 1

r

dV (r)

dr
. (1)

HSO can be derived in the nonrelativistic approximation of relativistic electron–atom
interactions. In spintronics, the spin–orbit coupling is manifest as Rashba and Dresselhaus
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interactions [5]. The Rashba interaction is the signature of structure inversion asymmetry
(SIA) present in essentially two-dimensional materials [6, 7]. Its Hamiltonian

HR = α

h̄
(pyσx − pxσy) (2)

combines components of the spin operator S (related to the Pauli matrices by S = h̄
2 σ) and the

momentum operator p. Its overall strength, the Rashba coupling constant α, can be controlled
experimentally. The Dresselhaus interaction, with coupling strength β, originates in bulk
inversion asymmetry (BIA) which is inherent to zinc-blende structures [8]

HD = β

h̄
(pxσx − pyσy). (3)

Interesting features such as spin accumulation [9], spin-Hall effect [10], quantum spin-Hall
effect [11], Zitterbewegung motion of the wavepacket [12] and persistent spin helix [13] have
been predicted and observed for spin–orbit coupled systems. It is our goal here to derive SOC
propagators in order to get a better handle on the evolution of the corresponding physical
systems. To our knowledge, the propagator method has not been applied explicitly to these
specific SOC systems.

The propagator method is a powerful tool to study the evolution of systems [15, 16]. The
quantum propagator K(r, r0; t) is the conditional transition amplitude between a state |r0〉
corresponding to an initial position r0 and a state |r〉 corresponding to a final position r over a
time interval t

K(r, r0; t) = 〈r|T (t)|r0〉 = 〈r| e
Ht
ih̄ |r0〉, (4)

where |r〉 represents a position eigenvector, 〈r| is its conjugate and T (t) is the time-evolution
operator which evolves a function from one time to another T (t)|ψ(r, 0)〉 = |ψ(r, t)〉 [17].
Since we are interested in spin systems, we construct propagators for the evolution of spin
distributions. By applying the propagators on a spin wavefunction ψ(r0, 0) at t = 0, we gain
information on the final spin wavefunction ψ(r, t) at any time

ψ(r, t) =
∫ ∞

−∞
K(r, r0; t)ψ(r0, 0) dr0. (5)

There are several methods for constructing spinless propagators. In this paper, we select
a classical action method [17] and an algebraic method [18] and extend them to spin-
dependent problems. The inclusion of the spin degree of freedom introduces a new level
of noncommutativity which can considerably complicate the analysis of the systems. We give
specific examples from 2D electron gas spin–orbit systems with limited noncommutativity and
obtain analytic expressions for the propagators. By limited we mean that we consider powers
and combinations of position, momentum and spin operators that allow some factorization
of exponentials so that Baker–Campbell–Hausdorff-type formulae take on simplified forms.
First, we consider particles moving under the influence of the spin–orbit coupling and isotropic
parabolic horizontal (xy) confinement

H = p2

2m
+ γσ · L +

1

2
mη2(x2 + y2), (6)

where γ and η are real constants. This Hamiltonian has been shown to exhibit different
chiralities for spin components [11]. We also consider specific spin–orbit-type interactions
from condensed matter systems, namely specific superpositions of Rashba and Dresselhaus
interactions. When both Rashba and Dresselhaus are present and balanced in strength, a
simplification occurs as the degrees of freedom decouple. We consider nonrelativistic free
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particles with spin under the influence of HR and HD and define the Equal–Strength–Rashba–
Dresselhaus (ESRD) Hamiltonian for α = β

HESRD = p2
x + p2

y

2m
+

α

h̄
(pyσx − pxσy + pxσx − pyσy), (7)

and the Opposite–Strength–Rashba–Dresselhaus (OSRD) Hamiltonian for α = −β

HOSRD = p2
x + p2

y

2m
+

α

h̄
(pyσx − pxσy − pxσx + pyσy). (8)

Equal–Strength–Rashba–Dresselhaus has been shown to exhibit helicoidal motion leading to a
so-called persistent spin helix [13] and is relevant to the development of the nonballistic spin-
field-effect transistor [14]. We also consider the case where an isotropic parabolic confinement
is added to both ESRD and OSRD systems. Confinement terms can represent the finite spatial
extension of realistic semiconducting samples.

The confined spin–orbit Hamiltonian corresponds to an atomic spin–orbit interaction
with the Coulomb potential in equation (1) replaced by a simple harmonic oscillator (SHO)
potential. Because the motion is limited to the plane, this particular coupling only brings
in the z component of the spin. Similarly the Rashba interaction can also be obtained from
equation (1) with a linear potential corresponding to a constant electric field [2]. These
Hamiltonians operate on a space of spin distributions or spinorial functions ψ(x, y) defined
in two dimensions characterized by the coordinates x and y, and with a spin degree of freedom
in 3D. These spinors obey time-dependent Pauli–Schrödinger equations.

This paper is organized as follows. We construct the quantum propagators for the atomic
spin–orbit Hamiltonians (in section 2) and for specific spintronics Hamiltonians (in section 3)
using both the classical action method and the algebraic method. In section 4, we illustrate the
power of using these propagators to study the evolution of spin wavepackets in two particular
cases of confined atomic and ESRD systems. In section 5, we weigh the relative advantages of
our two methods in view of their applicability to the particular physical realizations discussed
in this paper.

2. Atomic spin–orbit coupling propagator

The Hamiltonian for the confined atomic spin–orbit coupling in the xy-plane is given by

Hc
SO = p2

x + p2
y

2m
+ σzγ (xpy − ypx) +

1

2
mη2(x2 + y2). (9)

Since only one Pauli operator occurs in the Hamiltonian, it corresponds to a constant of the
motion. The classical action method [17] can be extended to a 2 × 2 spin formalism. The
successive steps consist in finding the corresponding Lagrangian, solving the Euler–Lagrange
equations, substituting the motion into the Lagrangian, integrating over time to find the action
and exponentiating to find the quantum propagator in two dimensions

K(x, x0, y, y0; t) = C exp

(
iS

h̄

)
, (10)

where S is the classical action and C is a c-number determined by the initial conditions.
Since only σz is present, the Hamiltonian in equation (9) is diagonal in the standard

representation of the Pauli matrices. In what follows, we use the symbol σz as a place holder
for (+1) and (−1) of the diagonal elements of the Pauli matrix σz. Therefore, our calculation
proceeds in the usual way with a scalar Lagrangian.
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We find Hamilton’s equations

ẋ = px

m
+ σzγy, ẏ = py

m
− σzγ x, (11)

perform a Legendre’s transformation

L =
∑

i

pi q̇i − H, (12)

and obtain the Lagrangian

L = 1
2m(ẋ2 + ẏ2) − mγσz(ẋy − ẏx) + 1

2m(γ 2 − η2)(x2 + y2). (13)

The equations of motions are obtained
d

dt

∂L

∂ẋ
− ∂L

∂x
= mẍ − 2mσzγ ẏ − (γ 2 − η2)mx = 0

d

dt

∂L

∂ẏ
− ∂L

∂y
= mÿ + 2mσzγ ẋ − (γ 2 − η2)my = 0,

(14)

and solved for x(t ′) and y(t ′) (which also provides ẋ(t ′) and ẏ(t ′)) using the boundary
conditions

x(0) = x0, x(t) = x, y(0) = y0, y(t) = y. (15)

The classical action,

S =
∫ t

0
L dt ′, (16)

is found by substituting the solutions into the Lagrangian and performing a partial integration

S = m

2
(xẋ + yẏ)|t0 −

∫ t

0

(
m

2
(xẍ + yÿ) + mγσz(ẋy − ẏx) − 1

2
m(γ 2 − η2)(x2 + y2)

)
dt ′

= 1

2
m(x(t)ẋ(t) + y(t)ẏ(t) − x(0)ẋ(0) − y(0)ẏ(0)). (17)

Note that the integrand in equation (17) vanishes as a result of the equations of motions [19].
We distinguish three cases η = 0, η = γ and arbitrary η corresponding to respectively

no confinement, spin–orbit from the confinement potential and the general case. In this last,
general, case, we use the algebraic method because it leads to the analytic result more elegantly
than the classical action method. That result reduces to the results found in the first two cases
when taking the proper limits.

2.1. Unconfined case: η = 0

For the unconfined Hamiltonian

H = p2
x + p2

y

2m
+ σzγ (xpy − ypx), (18)

we solve the equations of motions in equation (14) with η = 0. The action in equation (17)
gives

S = m

2t

(
x2 + x2

0 + y2 + y2
0 − 2(xx0 + yy0) cos γ t + 2σz(−xy0 + x0y) sin γ t

)
(19)

and, as a result, the unconfined spin–orbit propagator is

K
(η=0)

SO (x, x0, y, y0; t) = m

2π ih̄t
exp

(
im

2h̄t

(
x2 + x2

0 + y2 + y2
0 − 2(xx0 + yy0) cos γ t

+ 2σz(−xy0 + x0y) sin γ t
))

, (20)
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where the front coefficient is determined by the initial condition on the propagator

lim
t→0

K(x, x0, y, y0; t) = δ(x − x0)δ(y − y0). (21)

This result can be checked against the free-particle propagator [17] by taking the limit
γ → 0

KFree(x, x0, y, y0; t) = m

2π ih̄t
exp

(
−m(x − x0)

2 + m(y − y0)
2

2ih̄t

)
. (22)

2.2. Larmor case (confined and balanced): η �= 0, η = γ

When the confinement strength η matches the SOC strength γ such that η = γ , the Hamiltonian

H = p2
x + p2

y

2m
+ σzγ (xpy − ypx) +

1

2
mγ 2(x2 + y2) (23)

can be recognized as describing a charged particle in a homogeneous magnetic field, where
γ plays the role of the Larmor frequency but exhibits an additional factor σz (σ 2

z = 1). The
propagator (without the σz factor) has been obtained for this Larmor case [20]

K(x, x0, y, y0; t) = m

2π ih̄t

γ t

sin γ t
exp

(
imγ

2h̄

(
(x − x0)

2 + (y − y0)
2

tan γ t
+ 2(x0y − xy0)

))
,

(24)

where the front coefficient is found using the Feynman trick [21].
The propagator including the σz factor is now obtained by replacing γ by γ σz, γ cot γ t

by γ σz cot γ σzt = γ cot γ t , and sin γ t by sin γ σzt = σz sin γ t . As a result

K
(η=γ )

SO (x, x0, y, y0; t) = m

2π ih̄t

γ t

sin γ t
exp

(
imγ

2h̄

(
(x − x0)

2 + (y − y0)
2

tan γ t
+ 2σz(x0y − xy0)

))
.

(25)

In the limit γ → 0, equation (25) reduces also to the free-particle propagator. Note that the
propagators in the section can also be obtained following the same steps as in section 2.1.

2.3. General case: η �= γ

For arbitrary η solving the equations of motions is cumbersome. Instead we use an
algebraic method introduced by Wang [18] to calculate the propagator. In the Hamiltonian in
equation (9), the spin–orbit term, which is linear in x, commutes with the sum of the confining
term, which is quadratic in x, and the kinetic term. Because of this limited noncommutativity,
the time-evolution operator T can be expressed as

T = exp

(
− iHt

h̄

)

= exp

(
− it

h̄

(
p2

2m
+ σzγ (xpy − ypx) +

1

2
mη2(x2 + y2)

))

= exp

(
− it

h̄
σzγ (xpy − ypx)

)
exp

(
− it

h̄

(
p2

2m
+

1

2
mη2(x2 + y2)

))
. (26)

Note that we have isolated to the right of this expression the complete simple harmonic
oscillator evolution.

5
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By applying equation (26) to a wavefunction, we obtain

ψ(x, y, t) = T (t, 0)ψ(x, y, 0)

= exp

(
− it

h̄
σzγ (xpy − ypx)

)
exp

(
− it

h̄

(
p2

2m
+

1

2
mη2(x2 + y2)

))
ψ(x, y; 0),

(27)

where exp
(− it

h̄

( p2

2m
+ 1

2mη2(x2 + y2)
))

ψ(x, y; 0) is known since it represents the result of
SHO evolution,

ψ(x, y, t) = T SHO(t, 0)ψ(x, y, 0)

= exp

(
− it

h̄

(
p2

2m
+

1

2
mη2(x2 + y2)

))
ψ(x, y, 0)

=
∫ ∞

−∞

∫ ∞

−∞
KSHO(x, x0, y, y0; t)ψ(x0, y0, 0) dx0 dy0, (28)

where KSHO(x, x0, y, y0; t) is the propagator for the simple harmonic oscillator [17]

KSHO(x, x0, y, y0; t) = mη

2π ih̄ sin ηt
exp

(
imη

2h̄ sin ηt

((
x2 + x2

0 + y2 + y2
0

)
cos ηt

− 2xx0 − 2yy0
))

. (29)

By substituting equation (29) into equation (28) and by comparing to equation (27) we
obtain

ψ(x, y, t) = exp

(
− it

h̄
σzγ (xpy − ypx)

)
exp

(
− it

h̄

(
p2

2m
+

1

2
mη2(x2 + y2)

))
ψ(x, y, 0)

= exp

(
− it

h̄
σzγ (xpy − ypx)

)
mη

2π ih̄ sin ηt

∫ ∞

−∞

∫ ∞

−∞
exp

(
imη

2h̄ sin ηt

((
x2 + x2

0

+ y2 + y2
0

)
cos ηt − 2xx0 − 2yy0

))
ψ(x0, y0, 0) dx0 dy0. (30)

The first factor exp
(− it

h̄
σzγ (xpy − ypx)

)
corresponds to a spin-dependent rotation

operator around the z-axis. Comparing with the usual rotation operator Rz(φ) = exp
(− iφLz

h̄

)
,

we extract the rotation angle φ = σzγ t . The effect of the rotation operator on a wavefunction
is given by

Rz(φ)f (x, y) = exp

(
− iφLz

h̄

)
f (x, y) = f (x cos φ + y sin φ,−x sin φ + y cos φ). (31)

Therefore by applying equation (31) to equation (30)

ψ(x, y, t) = exp

(
− it

h̄
σzγ (xpy − ypx)

)
mη

2π ih̄ sin ηt

∫ ∞

−∞

∫ ∞

−∞
exp

(
imη

2h̄ sin ηt

((
x2 + x2

0

+ y2 + y2
0

)
cos ηt − 2xx0 − 2yy0

))
ψ(x0, y0, 0) dx0 dy0

= mη

2π ih̄ sin ηt

∫ ∞

−∞

∫ ∞

−∞
exp

(
imη

2h̄ sin ηt

((
(x cos φ + y sin φ)2 + x2

0

+ (−x sin φ + y cos φ)2 + y2
0

)
cos(ηt) − 2(x cos φ + y sin φ)x0

− 2(−x sin φ + y cos φ)y0
))

ψ(x0, y0, 0) dx0 dy0. (32)

6
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By comparing with the propagator integral formula in equation (5), it is straightforward
to extract the propagator for the generalized case

K(x, x0, y, y0; t) = mη

2π ih̄ sin ηt
exp

(
imη

2h̄ sin ηt

((
(x cos φ + y sin φ)2 + x2

0

+ (−x sin φ + y cos φ)2 + y2
0

)
cos ηt − 2(x cos φ + y sin φ)x0

− 2(−x sin φ + y cos φ)y0
))

. (33)

Substituting the rotation angle φ = σzγ t back into equation (33) and using cos σzγ t = cos γ t ,
and sin σzγ t = σz sin γ t , we obtain the propagator for arbitrary η and γ

K
(η �=γ )

SO (x, x0, y, y0; t) = mη

2π ih̄ sin ηt
exp

(
imη

2h̄ sin ηt

((
x2 + y2 + x2

0 + y2
0

)
cos ηt

− 2(xx0 + yy0) cos γ t − 2σz(x0y − xy0) sin γ t
))

. (34)

This result for the general confined atomic spin–orbit propagator reduces to the expression
of the propagator for the unconfined (equation (20)), Larmor (equation (25)), simple harmonic
oscillator (equation (29)), and the free particle (equation (22)). Applications to equation (34)
are discussed in section 5. Note that it is also straightforward to apply the algebraic method to
the unconfined case directly since the kinetic energy itself commutes with the spin–orbit term.

3. ESRD and OSRD spintronics propagators

The confined ESRD and OSRD Hamiltonians are given by

Hc
ESRD = p2

2m
+

α

h̄
(px + py)(σx − σy) +

1

2
mη2(x2 + y2) (35)

Hc
OSRD = p2

2m
+

α

h̄
(px − py)(σx + σy) +

1

2
mη2(x2 + y2). (36)

We start by considering the unconfined case (η = 0) and later proceed to arbitrary
confinement.

3.1. Unconfined case η = 0

In the ESRD case, we see from equation (35) that the two dimensions are decoupled unlike
in the Rashba-only (equation (2)) and Dresselhaus-only (equation (3)) cases. Decoupling
means that the total Hamiltonian can be written as a sum of two commuting Hamiltonians
corresponding to the motion in two independent dimensions

HESRD = H(x) + H(y), H(x) = p2
x

2m
+

α

h̄
px(σx − σy), H(y) = p2

y

2m
+

α

h̄
py(σx − σy).

We apply the classical action method to the Hamiltonian in the x dimension

H = p2
x

2m
+ νpx, (37)

where ν stands for the factor α
h̄
(σx − σy). Applying Hamilton’s equation

ẋ = ∂H

∂px

= px

m
+ ν (38)

7
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and using a Legendre transformation, we find

L = pxẋ − H = mẋ2

2
− mνẋ +

mν2

2
. (39)

The corresponding equations of motion

d

dt

∂L

∂ẋ
− ∂L

∂x
= ẍ = 0 (40)

describe a free particle. The classical action can now be evaluated

S =
∫ t

0
L dt ′ = mxẋ

2

∣∣∣∣
t

0

−
∫ t

0

(
mxẍ

2
+ mνẋ − mν2

2

)
dt ′. (41)

As opposed to the examples in section 2, the integrand does not equate zero but it can be
integrated directly

S =
∫ t

0
L dt ′ = mxẋ

2

∣∣∣∣
t

0

− mνx|t0 +
mν2t

2
, (42)

where the first term corresponds to the usual free-particle component. It is shifted by a
second term which is time independent and position dependent. The third term is just a time-
dependent phase. Therefore, the propagator for the Hamiltonian in equation (37) is obtained
from equation (10)

K(x, x0; t) =
√

m

2π ih̄t
exp

(
− m

2ih̄t
(x − x0)

2 +
mν(x − x0)

ih̄
− mν2t

2ih̄

)

=
√

m

2π ih̄t
exp

(
− m

2ih̄t
(x − x0 − νt)2

)
(43)

or, replacing ν by its value,

K(x, x0; t) =
√

m

2π ih̄t
exp

(
− m

2ih̄t
(x − x0 − α

h̄
(σx − σy)t)

2

)
. (44)

The propagator in the other dimension K(y, y0; t) can be obtained in a similar manner.
As a result of the decoupling in the Hamiltonian, we find immediately the 2D propagator as a
product of two 1D propagators

K
(η=0)

ESRD (x, y, x0, y0; t) = m

2π ih̄t
exp

(
− m

2ih̄t

((
x − x0 − α

h̄
(σx − σy)t

)2

+

(
y − y0 − α

h̄
(σx − σy)t

)2))
. (45)

In the OSRD case, the two dimensions are again decoupled but ν takes on a different
value. The OSRD propagator is thus obtained similarly

K
(η=0)

OSRD(x, y, x0, y0; t) = m

2π ih̄t
exp

(
− m

2ih̄t

((
x − x0 − α

h̄
(σx + σy)t

)2

+

(
y − y0 +

α

h̄
(σx + σy)t

)2))
. (46)

For completeness we now derive the KESRD and KOSRD propagators using the algebraic method.
Regarding the ESRD propagator, we first consider each dimension separately and find the effect
on the spinorial function ψ(x). Since the kinetic term in H(x) commutes with the potential

8
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term, we use the coordinate representation for the momentum operator px = h̄
i
∂x to rewrite

the ESRD time-evolution operator

T (t, 0)
η=0
ESRD = exp

((−h̄2∂xx

2m
+ α

i ∂x(σx − σy)
)
t

ih̄

)

= exp

(
−α∂x(σx − σy)t

h̄

)
exp

((−h̄2∂xx

2m

)
t

ih̄

)
. (47)

The expression exp
( ( −h̄2∂xx

2m
)t

ih̄

)
ψ(x, 0) is known since

ψ(x, t) = T Free(t, 0)ψ(x, 0) = exp

(
− t

ih̄

(
h̄2∂xx

2m

))
ψ(x, 0)

=
∫ ∞

−∞
KFree(x, x0; t)ψ(x0, 0) dx0, (48)

where KFree(x, x0; t) is the propagator for the free particle provided in equation (22) in one
dimension. After substitution, we obtain

ψ(x, t) = T (t, 0)ψ(x, 0)

= exp

(
−α∂x(σx − σy)t

h̄

) √
m

2π ih̄t

∫ ∞

−∞
exp

(
−m(x − x0)

2

2ih̄t

)
ψ(x0, 0) dx0. (49)

The term exp
(− α∂x(σx−σy)t

h̄

)
acts as a spin-dependent displacement in the x coordinate.

By applying the usual displacement formula

exp(−ξ∂x)ψ(x) = ψ(x − ξ) (50)

with ξ replaced by a diagonalizable matrix α(σx − σy)t/h̄, we immediately obtain

ψ(x, t) = T (t, 0)ψ(x, 0)

=
√

m

2π ih̄t

∫ ∞

−∞
exp

(
−m

(
x − x0 − α(σx−σy)t

h̄

)2

2ih̄t

)
ψ(x0) dx0. (51)

We then extract the quantum propagator from equations (5) and (51)

K(x, x0, t) =
√

m

2π ih̄t

∫ ∞

−∞
exp

(
−m

(
x − x0 − α(σx−σy)t

h̄

)2

2ih̄t

)
. (52)

Note that we have only obtained the propagator for the motion in x. K(y, y0; t) is obtained
in analogy with K(x, x0; t). The 2D ESRD propagator is simply the product of K(x, x0; t)

and K(y, y0; t)

K
(η=0)

ESRD (x, y, x0, y0; t) = m

2π ih̄t
exp

(
− m

2ih̄t

((
x − x0 − α

h̄
(σx − σy)t

)2

+

(
y − y0 − α

h̄
(σx − σy)t

)2))
. (53)

The construction of the OSRD propagator is similar

K
(η=0)

OSRD(x, y, x0, y0; t) = m

2π ih̄t
exp

(
− m

2ih̄t

((
x − x0 − α

h̄
(σx + σy)t

)2

+

(
y − y0 +

α

h̄
(σx + σy)t

)2))
. (54)

9
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We thus recover the results from equations (45) and (46). By comparing with the usual
free-particle propagator in equation (22), it is interesting to note that a shift in the position
appears in both dimensions in the exponential. The shift reflects two different inertial frames
in relative motion. This effect is caused by the term linear in p in the Hamiltonian.

3.2. Confined case: η �= 0

We first consider the classical action method. The two dimensions are again decoupled and it
is straightforward to work out the one-dimensional propagator. The Hamiltonian

H = p2
x

2m
+ νpx +

1

2
mη2x2 (55)

corresponds to the Lagrangian

L = mẋ2

2
− mνẋ +

mν2

2
− 1

2
mη2x2 (56)

after applying a Legendre transformation with ν = α
h̄
(σx −σy) in the constrained ESRD case or

ν = α
h̄
(σx +σy) in the constrained OSRD case. It is interesting to note that the Euler–Lagrange

equations are identical to those of the usual simple harmonic oscillator potential. The action,
however, is different

S =
∫ t

0
L dt ′ =

∫ t

0

(
mẋ2

2
− mνẋ +

mν2

2
− 1

2
mη2x2

)
dt ′

= 1

2
mxẋ

∣∣∣∣
t

0

−
∫ t

0

(
1

2
mxẍ +

1

2
mη2x2 + mνẋ − 1

2
mν2

)
dt ′, (57)

where the first two terms inside the integral add up to zero from the equations of motion for
the simple harmonic oscillator. Therefore

S = 1

2
mxẋ

∣∣∣∣
t

0

−
∫ t

0

(
mνẋ − 1

2
mν2

)
dt ′

= 1

2
m(x(t)ẋ(t) − x(0)ẋ(0)) − mν(x(t) − x(0)) +

1

2
mν2t, (58)

where the first term 1
2m(x(t)ẋ(t) − x(0)ẋ(0)) corresponds to the classical action for the usual

harmonic oscillator potential. By substituting the harmonic oscillator solution

x(t ′) = csc ηt (x sin ηt ′ − x0 sin η(t ′ − t)) (59)

into the action S, we obtain

S(x, x0; t) = m

2

((
x2

0 + x2
)
η cot ηt − 2x0xη csc ηt

)
+

mν

2
(2x0 − 2x + tν).

Therefore the propagator has the form

K(x, x0; t) = C exp

(
iS

h̄

)

= C exp

(
im

2h̄

((
x2

0 + x2
)
η cot ηt − 2x0xη csc ηt + ν(2x0 − 2x + tν)

))
, (60)

where C is again obtained using Feynman’s trick

K(x, x0; t) =
√

mη

2π ih̄ sin ηt
exp

(
im

2h̄

((
x2

0 + x2)η cot ηt − 2x0xη csc ηt + ν(2x0 − 2x + tν)
))

.

(61)

10
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Note that in the constrained ESRD case, the x and y dimensions have the same sign multiplying
ν due to the presence of the term ν(px + py), whereas in the constrained OSRD the x and
y dimensions have opposite signs multiplying ν due to ν(px − py). As a result, the two-
dimensional propagators Kc

ESRD and Kc
OSRD are simply the products of two 1D propagators,

and the only difference between the two appears in the terms linear in ν

Kc
ESRD(x, y, x0, y0; t) = mη

2π ih̄ sin ηt
exp

(
im

2h̄

((
x2

0 + x2 + y2
0 + y2

)
η cot ηt

− 2(x0x + y0y)η csc ηt + ν(2x0 − 2x + 2y0 − 2y + 2tν)
))

(62)

Kc
OSRD(x, y, x0, y0; t) = mη

2π ih̄ sin ηt
exp

(
im

2h̄

((
x2

0 + x2 + y2
0 + y2

)
η cot ηt

− 2(x0x + y0y)η csc ηt + ν(2x0 − 2x − 2y0 + 2y + 2tν)
))

. (63)

In equations (62) and (63), ν takes on the values ν = α(σx − σy)/h̄ (ESRD) and
ν = α(σx + σy)/h̄ (OSRD). It can be verified that the limits η → 0 (unconfined) and ν → 0
(simple harmonic oscillator) reduce to the corresponding propagators.

We now proceed with the algebraic method for the confined case. When including
a harmonic oscillator potential, the algebraic method becomes challenging due to the
noncommutativity

[
px, p

2
x + (1/2)mω2x2

] �= 0. As a consequence, the kinetic and potential
terms cannot be simply factorized. The usual simple harmonic oscillator propagator has been
derived using the algebraic method [18] with the operators

L− = − 1
2∂xx, L+ = 1

2x2, L3 = 1
2x∂x + 1

4 , (64)

which satisfy the commutation relation of the Lie algebra su(2), namely

[L+, L−] = 2L3, [L3, L±] = ±L±. (65)

We first consider the Hamiltonian in equation (55) with a shift in the momentum. Therefore
we set out to modify the operators to

L− = −1

2
∂xx +

mν

ih̄
∂x +

m2ν2

2h̄2 , L+ = 1

2
x2, L3 = 1

2
x∂x +

1

4
− xmν

2ih̄
, (66)

which still satisfy equation (65).
By applying a Baker–Campbell–Hausdorff-like relation [23, 24]

exp(τL+ − τL−) = exp

(
τ

|τ | tan(|τ |)L+

)
exp(−2 ln cos(|τ |)L3) exp

(
− τ

|τ | tan(|τ |)L−

)
(67)

and substituting τ = −itmη2

h̄
, τ = ith̄

m
and |τ | = ηt , we rewrite the time-evolution operator as

T = exp

(
− it

h̄

(
h̄2

m

(
−∂xx

2
+

mν

ih̄
∂x +

m2ν2

2h̄2 +
1

2
mη2x2 − m2ν2

2h̄2

))

= exp

(
itmν2

2h̄

)
exp

(
− it

h̄

(
h̄2

m

(
−∂xx

2
+

mν

ih̄
∂x +

m2ν2

2h̄2 +
1

2
mη2x2

)))

= exp

(
itmν2

2h̄

)
exp

(−imη

h̄

x2

2
tan ηt

)
exp

(
−2

(
1

2
x∂x +

1

4
− xmν

2ih̄

)
ln cos ηt

)

× exp

(−ih̄

mη

(
−1

2
∂xx +

mν

ih̄
∂x +

m2ν2

2h̄2

)
tan ηt

)
. (68)

11
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By applying the product of exponentials to a wavefunction, the last line in equation (68)
corresponds to two commuting operators ∂xx and ∂x , and it is straightforward to apply them
to a wavefunction using equation (48) and the usual displacement formula [17]

exp(a∂x)f (x) = f (x + a), (69)

which gives

ψ(x, t) = T (t, 0)ψ(x, 0)

= exp

(
itmν2

2h̄

)
exp

(−imη

h̄

x2

2
tan ηt

)
exp

(
−

(
x∂x +

1

2
− xmν

ih̄

)
ln cos ηt

)

×
√

mη

2π ih̄ tan ηt

∫ ∞

−∞
exp

(
− mη

2ih̄ tan ηt

(
(x − x0)

2 − 2
ν(x − x0)

η
tan ηt

))
× ψ(x0, 0) dx0. (70)

The term exp
(−(

x∂x + 1
2 − xmν

ih̄

)
ln cos ηt

)
cannot be factorized immediately due to the

commutator [x∂x, x] = x. Instead the Zassenhaus formula which relates noncommuting
operators in exponentials [25]

et (X+Y ) = etX etY e− t2

2! [X,Y ] e
t3

3! (2[Y,[X,Y ]]+[X,[X,Y ]])

× e− t4

4! (3[Y,[Y,[X,Y ]]]+3[X,[Y,[X,Y ]]]+[X,[X,[X,Y,]]]) . . . (71)

is needed. It is interesting to note that exp(ax∂x + abx) can be factorized even in the presence
of a non-terminating series in the Zassenhaus formula, namely

exp(ax∂x + abx) = exp(ax∂x) exp(abx) exp

(
−a2bx

2!

)
exp

(
a3bx

3!

)
. . .

= exp(ax∂x) exp

( ∞∑
n=1

an(−1)n−1

n!
bx

)

= exp(ax∂x) exp((1 − exp(−a))bx). (72)

By comparing exp
(−(

x∂x − xmν
ih̄

)
ln cos ηt

)
with equation (72) we extract a = − ln cos ηt,

b = −mν
ih̄ . As a result we obtain that

exp

(
−

(
x∂x +

1

2
− xmν

ih̄

)
ln cos ηt

)

= 1√
cos ηt

exp

(
−

(
x∂x − xmν

ih̄

)
ln cos ηt

)

= 1√
cos ηt

exp(−x∂x ln cos ηt) exp

(
−(1 − exp(ln cos ηt))

mνx

ih̄

)

= 1√
cos ηt

exp(−x∂x ln cos ηt) exp

(
−(1 − cos ηt)

mνx

ih̄

)
. (73)

Now the term exp(−x∂x ln cos ηt) corresponds to a dilatation operator. The effect of a
dilatation operator on a function is given by [18, 22]

exp(ax∂x)f (x) = f (eax). (74)

Therefore the operator exp(−x∂x ln cos ηt) changes every x to x/ cos ηt .

12
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Combining these results we obtain

ψ(x, t) = T (t, 0)ψ(x, 0)

= exp

(
itmν2

2h̄

)
exp

(−imη

h̄

x2

2
tan ηt

)
exp

(
−(1 − cos ηt)

mνx

ih̄ cos ηt

)√
mη

2π ih̄ sin ηt

×
∫ ∞

−∞
exp

(
− mη

2ih̄ tan ηt

((
x

cos ηt
− x0

)2

− 2
ν
(

x
cos ηt

− x0
)

η
tan ηt

))

× ψ(x0, 0) dx0

=
√

mη

2π ih̄ sin ηt

∫ ∞

−∞
exp

(
im

2h̄

((
x2 + x2

0

)
η cot ηt − 2xx0η csc ηt

+ 2ν(x0 − x) + ν2t
))

ψ(x0, 0) dx0. (75)

The propagator for the confined ESRD (OSRD) in one dimension can be extracted

K(x, x0; t) =
√

mη

2π ih̄ sin ηt
exp

(
im

2h̄

((
x2 + x2

0

)
η cot ηt − 2xx0η csc ηt

+ 2ν(x0 − x) + ν2t
))

, (76)

which matches equation (61). Again in 2D we obtain the results from equations (62) and (63)
as the product of two 1D propagators.

4. Applying the propagator to spin wavepacket evolution

We now apply the propagators for the confined atomic spin–orbit coupled system and for the
confined ESRD system to a localized spin wavepacket. The spin wavepacket we consider
ψ(x0, y0; t) is a Gaussian distribution in space centered at (x ′, y ′) with widths wx and wy and
with spin polarizations determined by constants χ and λ such that |χ |2 + |λ|2 = 1 and

ψ(x0, y0; t) = 1

πwxwy

exp

(
− (x0 − x ′)2

2w2
x

− (y0 − y ′)2

2w2
y

)(
χ

λ

)
. (77)

By applying K
η �=γ

SO (equation (34)) to ψ(x0, y0; t) as in equation (5) we obtain

ψ(x, y; t) = 1

πwxwy

√√√√ 1(
cos ηt − h̄ sin ηt

imηw2
x

)(
cos ηt − h̄ sin ηt

imηw2
y

) exp

(
imη(x2 + y2) cos ηt

2h̄ sin ηt

− x ′2

2w2
x

− y ′2

2w2
y

+
m

(
x cos γ t + yσz sin γ t + x ′h̄ sin ηt

imηw2
x

)2

2ih̄ sin ηt
(
cos ηt − h̄ sin ηt

imηw2
x

)

+
m

(
y cos γ t − xσz sin γ t + y ′h̄ sin ηt

imηw2
y

)2

2ih̄ sin ηt
(
cos ηt − h̄ sin ηt

imηw2
y

)
) (

χ

λ

)
. (78)

Note that we use natural units in generating the plots. We provide an initial spin state with
spin-up (↑) (χ = 1, λ = 0), center the initial wavepacket at (x ′, y ′) = (1, 1) for simplicity
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(a) (b)

(c) (d)

(e) ( f )

Figure 1. Spin probability density ρ↑ contour plot for a spin state initially up for six successive
times from 0 to 0.5 from (a)–(f ) with an increment of 0.1 between plots. The parameters are
chosen as follows: m = 1, h̄ = 1, wx = wy = 1, η = 1, γ = 10.

and display the spin probability density ρ↑ = |ψ↑|2 at six different times in figures 1(a)–(f ).
We see that the spin wavepacket performs a counterclockwise rotation.

Next, by applying the propagator for the confined ESRD system (equation (62)) to
ψ(x0, y0; t) (equation (77)) in equation (5) we obtain

ψ(x, y; t) = 1

πwxwy

√√√√ 1(
cos ηt − h̄ sin ηt

imηw2
x

)(
cos ηt − h̄ sin ηt

imηw2
y

) exp

(
im

2h̄

(
(x2 + y2)η cot ηt

+
α

h̄
(σx − σy)

(
−2x − 2y +

2α

h̄
(σx − σy)t

))
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(a) (b)

(c) (d)

(e) ( f )

Figure 2. Spin probability density ρκ contour plot for a spin state initially χ = (−1 − i)/2, λ = 1
for six successive times from 0 to 5 from (a)–(f ) with an increment of 1 between plots. The
parameters are chosen as follows: m = 1, h̄ = 1, wx = wy = 1, η = 1, α = 1.

− x ′2

2w2
x

− y ′2

2w2
y

+
m

(
xη csc ηt − α

h̄
(σx − σy) + ih̄x ′

mw2
x

)2

2ih̄
(
η cot ηt + ih̄

mw2
x

)

+
m

(
yη csc ηt − α

h̄
(σx − σy) + ih̄y ′

mw2
y

)2

2ih̄
(
η cot ηt + ih̄

mw2
y

)
) (

χ

λ

)
. (79)

For simplicity, we choose the initial spin state to be one of the eigenspinors of σx − σy

such that χ = (−1 − i)/2, λ = 1 and we denote this spin state as κ . This choice guarantees
that spin-flipping does not occur. The initial Gaussian is again chosen to be centered at
(x ′, y ′) = (1, 1). We plot the spin probability density ρκ = |ψκ |2 at six different times in
figures 2(a)–(f ). We see that the spin wavepacket performs oscillations on the diagonal axis.
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In these and other cases the propagator clearly determines the wavepacket evolution. More
complex behavior can be observed when the initial wavepacket consists of superpositions of
eigenspinors.

5. Discussion

We have obtained propagators for atomic spin–orbit coupled systems and for ESRD and OSRD
spintronics systems by using two different methods. The first method is based on the classical
action and is familiar from spinless systems [20]. It relies on direct integration, substitution,
Legendre transformation and the application of the initial conditions. In reality, the actual
integration can often be avoided [19]. However, as the Hamiltonians get more complex,
the differential equations to be solved contain more terms and an alternate method becomes
preferable. In particular for the most general confined atomic spin–orbit case (section 2.3)
we choose to obtain the propagator with the algebraic method. In the algebraic method, we
permute noncommutative operators in the exponentials in order to extract factors corresponding
to recognizable propagators. This method is not algorithmic but involves the identification of
mutually commuting parts. These parts either correspond to systems whose propagators are
known or whose action on the wavefunction can be evaluated directly. In the atomic spin–orbit
case, the algebraic method involves the propagator of the simple harmonic oscillator and a
spin-dependent rotation operator. Both operations can be applied directly to the wavefunctions.
The two methods illustrate different approaches and we have used them both to derive the
ESRD and ORSRD propagators. Both methods yield the same result with comparable levels
of complexity. In the ESRD/OSRD confined case, the confining harmonic oscillator does
complicate the algebraic method significantly. This shows that each method has its merits
and that the choice of method should be determined carefully by taking into consideration the
complexity of the Hamiltonian. This does not exclude the possibility of looking into extending
still other methods such as the path-integral method [20] or Schwinger’s method [26, 27] to
the spin degree of freedom when dealing with spin–orbit coupled Hamiltonians.

The physical systems that we have considered all display the spin–orbit coupling. We
have limited our attention to a dependence that is at most quadratic in x and p. Because
of the properties of the spin, σ 2 = 1, quadratic or higher orders of spin do not appear. In
general, a linear term in the momentum p can be absorbed in the kinetic energy by shifting
the momentum and by adding a constant energy. The equations of motion will be unaffected.
This is the momentum equivalent of shifting the equilibrium of an oscillator in the presence
of a constant force. However, the action and the propagator of such systems will contain extra
terms. This can be compared to the description of motion in inertial frames that are in relative
motion. Our systems are also effectively two dimensional only, as momentum in z is frozen
out. These effective 2D Hamiltonians find application in real systems. Bernevig et al [11]
have recently found that the Hamiltonian for strained materials with quantum well parabolic
confinement is of the form

H = p2

2m
+

C3g

2h̄
(ypx − xpy)σz + D(x2 + y2), (80)

where C3 is a material-dependent constant and D corresponds to the confinement strength.
Landau levels result from such a Hamiltonian without the presence of a magnetic field.
Bernevig et al [13] also found that ESRD Hamiltonian leads to interesting persistent spin
helix phenomena in condensed matter systems. Both Rashba and Dresselhaus interactions can
also be replicated in ultracold atoms [4]. ESRD and OSRD apply to systems that have equal
amounts of Rashba and Dresselhaus interactions only. Because of the noncommutativities of
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the Rashba and Dresselhaus parts, the propagator of the combined interactions differs from
the product of the individual propagator.

The construction of propagators in spin–orbit coupled systems remains challenging.
Nevertheless for those specific cases treated in this paper, the propagators can be found
in closed form and can be applied to predict and display spin evolution.
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